(ii) \\(\\left(0, \\frac{1}{2}\\right)\\)
", "A2" => "Solution:
Here x = 0 and y = \\(\\frac{1}{2}\\)
the point lies on the positive side of Y-axis. Let the polar coordinates be (r, θ)
Then, r2 = x2 + y2 = (0)2 + \\(\\left(\\frac{1}{2}\\right)^{2}=0+\\frac{1}{4}=\\frac{1}{4}\\)
∴ r = \\(\\frac{1}{2}\\) …[∵ r > 0]
cosθ = \\(\\frac{x}{r}=\\frac{0}{(1 / 2)}\) = 0
and sin θ = \\(\\frac{y}{r}=\\frac{(1 / 2)}{(1 / 2)}\\) = 1
Since, the point lies on the positive side of Y-axis and 0 ≤ θ ≤ 2π
cosθ = 0 = cos\\(\\frac{\\pi}{2}\\) and sinθ = 1 = sin\\(\\frac{\\pi}{2}\\)
∴ θ = \\(\\frac{\\pi}{2}\\)
∴ the polar coordinates of the given point are \\(\\left(\\frac{1}{2}, \\frac{\\pi}{2}\\right)\\).", "Q3" => "Find the of the polar coordinates point whose Cartesian coordinates are.
(iii) \\((1,-\\sqrt{3})\\)
", "A3" => "Solution:
Here x = 1 and y = \\(-\\sqrt{3}\\)
∴ the point lies in the fourth quadrant.
Let the polar coordinates be (r, θ).
Then, r2 = x2 + y2 = (1)2 + (\\(-\\sqrt {3}\\) )2 = 1 + 3 = 4
∴ r = 2 … [∵ r > 0]
" ); ?>
-
Find the of the polar coordinates point whose Cartesian coordinates are.
(i) \\((\\sqrt{2}, \\sqrt{2})\\)
Solution:
2 = 2 + 2 = 4
Here x = \\(\\sqrt {2}\\) and y = \\(\\sqrt {2}\\)
∴ the point lies in the first quadrant.
Let the polar coordinates be (r, θ)
Then, r2 = x2 + y2 = (\\(\\sqrt {2}\\) )2 + (\\(\\sqrt {2}\\) )
∴ r = 2 … [∵ r > 0]
cos θ = \\(\\frac{x}{r}=\\frac{\\sqrt{2}}{2}=\\frac{1}{\\sqrt{2}}\\)
and sin θ = \\(\\frac{y}{r}=\\frac{\\sqrt{2}}{2}=\\frac{1}{\\sqrt{2}}\\)
∴ tan θ = 1
Since the point lies in the first quadrant and
0 ≤ θ ≤ 2π, tan θ = 1 = tan\\(\\frac{\\pi}{4}\\)
∴ θ = \\(\\frac{\\pi}{4}\\)
∴ the polar coordinates of the given point are \\(\\left(2, \\frac{\\pi}{4}\\right)\\).",
Comments
Post a Comment